Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423733

ABSTRACT

Although a defective vitamin D pathway has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D pathway and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D pathway in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes modulated by vitamin D were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D pathway in SARS-CoV-2-infected cells. Network analysis of differentially expressed vitamin D-modulated genes identified pathways in the immune system, NF-KB;cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results provided computational evidence to implicate a dysregulated vitamin D pathway in the pathobiology of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Cerebrospinal Fluid Leak
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.28.20221200

ABSTRACT

Background: Covid-19 curve can be flattened by adopting mass screening protocols with aggressive testing and isolating infected populations. The current approach largely depends on RT-PCR/rapid antigen tests that require expert personnel resulting in higher costs and reduced testing frequency. Loss of smell is reported as a major symptom of Covid-19, however, a precise olfactory testing tool to identify Covid-19 patient is still lacking. Methods: To quantitatively check for the loss of smell, we developed an odor strip, COVID-Anosmia checker, spotted with gradients of coffee and lemon grass oil. We validated its efficiency in healthy and COVID-19 positive subjects. A trial screening to identify SARS-CoV-2 infected persons was also carried out to check the sensitivity and specificity of our screening tool. Results: It was observed that COVID positive participants were hyposmic instead of being anosmic when they were subjected to smelling higher odor concentration. Our tool identified 97% of symptomatic and 94% of asymptomatic COVID-19 positive subjects after excluding most confounding factors like concurrent chronic sinusitis. Further, it was possible to reliably predict COVID-19 infection by calculating a loss of smell score with 100% specificity. We coupled this tool with a mobile application, which takes the input response from the user, and can readily categorize the user in the appropriate risk groups. Conclusion: Loss of smell can be used as a reliable marker for screening for Covid-19. Our tool can rapidly quantitate anosmia, hyposmia, parosmia, and can be used as a first-line screening tool to trace out Covid-19 infection effectively.


Subject(s)
COVID-19 , Sinusitis , Olfaction Disorders , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL